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Abstract

Thispaper describes anovel approach to providing mod-
ular and extensible operating system functionality, and en-
capsulated environments, based on a synthesis of micro-
kernel and virtual machine concepts. We have developed a
virtualizable architecture that allows recursive virtual ma-
chines(virtual machines running on other virtual machines)
to beefficiently implemented, in software, by amicrokernel
running on generic hardware. A complete virtual machine
interfaceis provided at each level; efficiency derivesfrom
needing to implement only new functionality at each level.

This infrastructure allows common OS functionality,
such as process management, demand paging, fault toler-
ance, and debugging support, to be provided by cleanly
modul arized, independent, stackabl e virtual machine mon-
itors, implemented as ordinary user processes. It can
also provide uncommon or unique OS features, including
the above features specialized for particular applications
needs, or virtual machines transparently distributed cross-
node, or security monitorsthat allow arbitrary untrusted bi-
nariesto be safely executed. Our prototypeimplementation
of thismodel indicatesthat it is practical to modularize op-
erating systems this way: some types of virtua machine
layers impose ailmost no overhead at all, while othersim-
pose some overhead (typically 10-20%), but only on cer-
tain classes of applications.

1 Introduction

Increasing operating system modul arity and extensibility
without excessively hurting performance isatopic of much
ongoing research[2, 13, 30, 35, 6]. Microkernel§[18, 1] at-
tempt to decompose operating systems “horizontally,” by
moving traditiona kernel functionality into serversrunning

inuser mode. Recursivevirtua machineg17], on the other
hand, allow operating systems to be decomposed “verti-
caly,” by implementing OS functionality in stackable vir-
tual machine monitors, each of which exports a virtua
machine interface compatible with the “real” machine in-
terface on which they themselves run. Traditionally, vir-
tual machines have been implemented on and export ex-
isting hardware architectures so they can support existing
“naive’ operating systems. (see Figure 1). For example,
the most well-known virtual machine system, VM/370[22,
23], provides virtua memory and security between mul-
tiple concurrent virtual machines, all exporting the IBM
S/370 hardware architecture. However, specia virtualiz-
able (firmware/hardware) architectureg[16, 29] have been
proposed, whose design goal is to alow virtua machines
to be stacked much more efficiently.

This paper presents a new approach to OS extensibil-
ity which combines both microkernel and virtual machine
concepts in one system. We have designed a virtualizable
architecture and implemented it in software using a mi-
crokernel. The microkernd runs on the “raw” hardware
platform, which together with a set of higher-level proto-
cols, exports a virtual machine that providesthe extended,
virtualizable architecture (see Figure 2). Virtual machine
monitors (VMMs) executed on this virtua machine can
efficiently create additional, recursive virtual machines in
which applicationsor other VMMs can run.

The microkernel’s API supports efficient recursion (hi-
erarchical process structuring) in several ways. For mem-
ory resources, the virtual machine hierarchy gets explicit
support from relative memory mapping primitivesthat al-
low address spaces to be composed from other address
spaces. For CPU resources, the kernel provides a primi-
tivethat supportshierarchical scheduling models. To alow
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Figure 1: Traditiona virtual machines based on hardware
architectures

Bare Machine

safe short-circuiting of the hierarchy, the kernel provides
aglobal capability model that supports selective interposi-
tion on communication channels. On top of the microker-
nel interfaces, well-defined | PC interfaces provide /O and
resource management functionality at a higher level than
in traditional virtual machines, more suited to the needs of
modern applications: e.g. filehandlesinstead of devicel/O
registers.

Terminology We now introduce some synonyms, to help
reduce awkward and repetitious terms. Henceforth, we
will treat the followingterms as equivalent: “recursive vir-
tual maching’” = “RVM” = “virtua machineg’ = “VM” =
“environment,” “virtual machine monitor” = “VMM” =
“nester,” and “hierarchical” = “recursive” = “nested.”

In addition, we will refer to the overall architecture de-
scribed in this paper as our “model,” to avoid confusion
with our virtual machine architecture.

1.1 Motivation

Recursive virtual machines can be used to apply existing
algorithmsand techniquesin moreflexibleways. Someex-
amplesinclude:

Decomposing the kernel: Some features of traditiona
operating systems are usually so tightly integrated into the
kerndl that it is difficult to eliminate them in situationsin
which they are not needed. The most obvious example
is demand paging: although it is often possible to disable
it in particular situations on particular regions, (eg., us-
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Figure 2: Virtual machines based on an extended architec-
ture implemented by a microkernel

ing PosIx’'sm ock() ), dl of the paging supportisstill in
thekernel, occupying memory and increasing system over-
head. Even systems that support “external pagers,” such as
Mach, contain considerable paging-related code in the ker-
nel, and most do not alow control over physical memory
management, just backing store. The majority of personal
computersare dedicated to the use of asingleperson; hence
multi-user security mechanisms are not always needed. A
system supporting our model would enable such featuresto
be decomposed into optiona virtua machine monitorsin-
voked on ademand basis, and only for the parts of asystem
for which they are desired.

Application-specific specializationisoften desirable; it
has been shown that specialized virtual memory manage-
ment can yield substantially better performance[ 30, 21, 25]
for certain applications which access memory in an un-
usua fashion (garbage collectors, object stores, relational
database systems, some numeric applications). Specialized
memory managers are easy to providein our system.

Increasing the scope of existing mechanisms. There
are agorithms and software packages available for com-
mon operating systems to provide features such as dis-
tributed shared memory[8, 26] (DSM) and security against
untrusted applicationg43]. However, these systems only
directly support applicationsrunninginasinglelogica pro-
tection domain. In arecursive virtual machine, any pro-
cess can create further nested subprocesses which are com-



pletely encapsulated within the parent’s virtual machine,
making them invisibleto entities outside the parent. This
allows DSM, checkpointing, security, and other mecha
nismsto be applied just as easily to multi-process applica
tions or even complete operating environments.

Combining OS features: The mechanisms mentioned
above are usually designed to work only within the scope
of a single application; they are difficult or impossible to
combinein aflexible manner. One might be ableto run an
application and checkpoint it, or to run an untrusted appli-
cation in asecure environment, but exi sting software mech-
anisms are insufficient to run a checkpointed, untrusted ap-
plication. A recursive virtual machine architecture allows
oneto combinethese features by |ayering the mechanisms,
since the interface between each “layer” isthe same,

Provision of isolated environments, a which today’s
OSs are very weak. can also be provided by recursive vir-
tual machines. With the advent of Web-based executable
content, security issues have become more and more im-
portant. Some designs, such as Java, try to achieve security
through a combination of language features and runtime
verification and control. However, Java requires the use
of a specia language, and recently uncovered bugs have
demonstrated that the implementation of the runtime secu-
rity mechanisms is error prone.

Virtual machines can providestrong i sol ation guarantees
between subsystemg[41], addressing denial-of-service at-
tacksand informationleaksthrough covert channelsaswell
as providing a clean separation between different pieces of
mobilecode (Applets). Suchisolationcan also beuseful for
resource reservation, such as guaranteei ng acertain amount
of physical memory to redl-time applications.

Another example of operating system functionality that
we believe could be implemented efficiently as VMMsin
thissystem is a distributed memory manager that provides
virtual machinestransparently distributed over thereal ma-
chines on a network. |.e, virtuaizing loca memory to ap-
pear distributed to all descendant processes, without their
knowledge or cooperation.

1.2 Our Example Virtual Machine Monitors

On top of our software-provided virtualizable architec-
turewehaveimplemented several traditional operatingsys-
tems features as independent, stackable virtual machine
monitors. These and similar components can be used to-
gether in many ways to build highly flexible systems, nat-
uraly supporting features that are difficult to implement
in conventional operating systems. For example, a check-
pointer can be transparently applied to arbitrary domains
such as a single application, a multi-process user environ-
ment containing a process manager and multiple applica
tions, or even the entire system. In this paper we demon-
stratethefollowing specific examples. POSIX process man-
agement, demand paging, checkpointing and debugging.

We used micro benchmarks to measure the system'’s per-
formance in a variety of configurations of the above pro-
grams and normal applications. These measurements in-
dicate a slowdown of about 5-30% per virtua machine
layer, in contrast to conventiona recursive virtual ma-
chines, whose sowdown is 20%—-1000%[4] Some virtua
machine monitors, such as the process manager and debug-
ger, do not need to interpose on performance-critical in-
terfaces such as memory alocation or file 1/0, and hence
take better advantage of the short-circuit communication
facilities provided by the microkernel architecture; these
monitors cause amost no slowdown at al. Other moni-
tors, such as the pager and the checkpointer, must inter-
fere more to perform their function, and therefore cause
some sowdown; however, even this slowdown is fairly
reasonable. These results indicate that, at least for the
applications we have tested so far, this combined virtua
machine/microkernel model indeed provides a practica
method of increasing operating system modul arity, flexibil-
ity, and power.

1.3 Goals

Our goasin thiswork are to: (i) Explain and compare
our combination of microkernel and recursive virtual ma-
chine concepts. (ii) Motivateit by describing useful func-
tionality it can provide. (iii) Elucidate thefundamental ker-
nel properties required to efficiently support such an ap-
proach. (iv) Design and implement such akerndl. (v) Es-
tablish that none of therequired kernel propertiesisincom-
patiblewith a high performance kerndl. (vi) Establish IPC-
based interfaces and protocol sthat providehigh-level func-
tionality, such asfile 1/0 and memory alocation, in aman-
ner consistent with the recursive virtual machine model.
(vii) Exploit themodel to demonstrate flexible provision of
OS features. (viii) Show that the per-layer nesting cost is
moderate and increases only linearly.

The rest of this paper is organized as follows. In Sec-
tion 2, we compare to related work. We describe our
software-provided virtualizable architecture in Section 3.
Section 4 describes the properties and design of the ker-
nel we devel oped to support the virtualizable architecture,
while Section 5 describes the high-level mechanisms and
protocols we used to implement virtual machine monitors
on top of thiskernel. Section 7 describes the experiments
and resultsusingthefour example VMMs. Finally, we con-
clude with a short reflective summary.

2 Redated Work

Most virtual machine systems have, and had, only shal-
low hierarchies, implementing all functiondlity in a few
layers. In fact, in their heyday, VMs were not driven by
modul arity issues at all. They were created to make better
use of scarce, expensive hardware resources.



Recently, a hypervisor was used to provide fault toler-
ance (replication) on a whole-machine basis on PA-RISC
machines [4]. This application of virtual machines can be
approximately compared with our application of RVMsto
provide adifferent form of fault tolerance (checkpointing).
This comparison further illustrates the relative merits of
each model: The hypervisor approach alows existing op-
erating systemsto be run unmodified (HP-UX inthiscase),
but only works on a whole-machine basis (e.g., the same
software cannot be used directly for smaller domains, such
asasingleprocess or agroup of processes.) Of course, this
comparison must be taken with a large dose of salt, since
the applications and fault tolerance al gorithmsin question
are quitedifferent.

Existing hardware-based VM architectures have severa
drawbacks: (i) most processor architectures don’t sup-
port it, since privilege-level information leaks into user-
accessible registers; (i) hardware interfaces are too low-
level, making stacking inefficient; (iii) duplication of effort
(e.g., double paging), as the whole VMM is duplicated at
each level; (iv) thereis no way to short-circuit layers and
selectively interpose.

Our RVM mode has superficial similarities to Unix’s
hierarchical process organization, in that parent processes
can create and control child processes. However, the Unix
model fallsfar short of atrueRVM, in at least thefollowing
important respects: (i) Parent processes have only avery
limited degree of control over their children. For example,
they cannot control memory or cpu usage of their children.
(ii) Child processes can allocate and use resources that the
parent process doesn’'t own (and possibly never did). (iii)
All processes are globaly visible in a single process ID
namespace. (iv) There are explicit privilege levels. This
doesn’t mean that the Unix process model isn’t useful—in
fact, it isvery useful, but cannot providethe control needed
for the extensibility provided by RVMs.

The Cambridge CAP computer[45] implements a hard-
ware (microcode) architecture that comes fairly close
to providing a nested process modd. It supports an
arbitrarily-deep process hierarchy, in which parent pro-
cesses can completely virtualize the memory and CPU us-
age of their child processes, as well as trap and system
call handlers for their children. However, the CAP com-
puter enforced the process hierarchy strictly, and did not
allow communication pathsto “short-circuit” the layers as
our system does. As noted in retrospect by the design-
ers of the system, this weakness made it impractical for
performance reasons to use more than two levels of pro-
cess hierarchy (corresponding roughly to the “supervisor”
and “user” modes of other architectures); thus, the uses of
nested processers were never actually explored or tested in
thissystem.

System call emulation and interposition have been used
in the past to interpose specia software modules between

an application and the OS on which it is running. This
form of interposition can be used, for example, to trace
system calls or change the process's view of the file
system[24], or to provide security against an untrusted
application[43]. However, these mechanisms can only be
applied easily in the scope of a single application process,
and generaly cannot be used together (i.e., only one in-
terposition module can be used for a given application).
Furthermore, although file system access and other system
call-based activity can be monitored and virtualized this
way, it would be difficult to virtualize other resources such
as CPU and memory.

The Exokernel [13] project’s work is orthogona, and
possibly complementary, to ours. They’re defining where
thesupervisor boundary is; we don’t care wherethat bound-
ary is, but only about the compositional functionality above
it. However, we do care that kernel operations don’t have
effects on system resources which can't be controlled by
VMMs: It'sunlikely that the Aegis kernel primitives cur-
rently providethe three key properties. Both systems sup-
port the ability for applicationsto have specialized environ-
ments, but in ExOS the application binary is modified by
linkingin OS library code.

Sub-systems supporting stackabl eand interposablefunc-
tionality in aparticular domain have been an active area of
research and devel opment for many years: Jones[24] gives
along list of them. Recent work has benefited from obj ect-
oriented structuring, including work on Spring’'s subcon-
tracts [19] and filesystems [27]. We believe that the care-
ful working out of domain-specific inter-layer protocolsis
complementary to our RVM work: the high-level compo-
nent of our VM (the “common protocols’) could use those
protocolsfor each class of functionality it provides.

A few existing operating systems, such as KeyKOS[3]
and L3[34] have implemented checkpointing on a whole-
machine basis in the kernel. While this feature appears
practical and useful in some situations, the checkpointing
built into these systems is inflexibly tied to the machine
boundary: it cannot be used on smaller scopes such as pro-
Cesses or groups of processes, or on larger scopes such as
networked clusters of machines. The nested process model
allows checkpointing and other agorithms to be imple-
mented over more flexible domains.

Our system borrows many design concepts and abstrac-
tions from other systems, suitably modified to support the
RVM model, asdescribed in thefoll owingsections. For ex-
ample, our hierarchical memory remapping mechanism has
similaritiesto (and isinspired by) that of L4[35], and ap-
pearsto provide precisdy the“f-map” semanticsdefined in
the recursive virtual machine literature[ 16, 17], our hierar-
chical scheduling mechanism is comparable to KeyKOS's
meterg[20], or lottery/stride scheduling’'s currencieg44].
The capability model we use for communication is of
course extremely well-known [31]; many of the details of



the desigh and the terminology we use are borrowed from
Mach 3.0[11]. The ability to export and re-create al ker-
nel object state appears very similar to the Cache Ker-
nel’s [9] abilitiesin that area. Our kernel object modd,
in which kernel objects are associated with chunks of user
memory, are reminiscent of tagged processor architectures
such as System 38[31] and the Intel i960XA. The design of
our high-level Unix emulation environment borrows heav-
ily from existing Mach-based multiservers, especialy the
GNU Hurd[5].

3 “Machine’ Architecture

Our virtuaizable architecture consists of three compo-
nents:
First, the extended architecture incorporates only the un-
privileged, “ non-sensitive” [17] subset of an existing in-
struction set architecture. Limiting the instruction set this
way avoids the need to emulate instructions, and makes it
possibletoimplement thevirtualizablearchitectureeven on
processor architecturessuch asthe PA-RISC, x86, or MIPS,
which don't fully support virtual machines based on raw
hardware interfaces[4].!

Second, alow-level API [14] (implemented by the mi-
crokernel) provides simple memory management, schedul-
ing, and IPC primitives similar to those of conventional
“small” microkernels such as the V++ CacheKernd[9],
L3/L4[33, 35], and KeyKOF[ 20, 3]. This APl isdesigned
to support recursive virtual machines efficiently by ensur-
ing that it is not necessary for every virtua machine layer
to interpose on and simulate primitive operations such as
I/O ingtructions, page table management, etc. The funda
mental propertiesrequired to achievethisefficiency are: (a)
all primitives are completely relative, implying no global
resources (e.g., KeyKos's “officia” space bank), names-
paces (e.g., Unix’s PIDs, L4's global thread/task ID’s), or
privileges (e.g., Unix’sroot, NT's ACL-based subject se-
curity). (b) dl state contained in primitive kernel objects
(e.g., threads, mappings) is exportable as plain data, in a
form that ordinary programs can later use to regenerate the
objects; and (c) al primitiveobjects are owned by, or asso-
ciated with, specific virtual machine environments.

Finally, the virtualizable architecture defines the “ com-
mon protocols,” aset of IPC-based interfaces used to im-
plement high-level functionality such asfile 1/O and mem-
ory dlocation. In function, these interfaces roughly corre-
spond to the device access conventions in traditiona vir-
tual machines and actua hardware, such as the register
interface to a SCSI adapter; however, in our architecture
these interfaces are much higher-level, closer to the appli-
cation interface than to the hardware. For example, the pri-
mary 1/O interface is based on file systems and stream 1/O,

TWe used the Intel x86 architecture for our initial implementation;
however, the concepts described here are not processor-specific.

rather than on bus devices and DMA or programmed 1/O.
These higher-level IPC-based interfaces eliminate the need
to simulate complicated hardware interfaces, and corre-
spondingly simplify and speed up implementationsof those
interfaces.

4 TheKernd

The first major component of our OSis Fluke, a micro-
kernel we designed to support recursive virtual machines.
Fluke was designed “from scratch” and is an entirely new
kernel. Althoughiit is probably possible to implement the
necessary support for RVMsinatraditional monolithicker-
nel, we decided to take a microkernel approach for the
proof-of-concept for two main reasons: (i) Wefeltit would
be much more difficult to adapt an existing monolithicker-
nel, because of the large source base and because the re-
quired changes would be widespread. (ii) A monolithic
kernel provides much less opportunity to make use of the
RVM modd. For example, while our checkpointer ex-
ample would probably still apply, the decomposed pro-
cess manager and virtual memory manager wouldn’t, since
these functions are already hard-wired into existing mono-
lithic systems. Of course, because of thisdecision, our sys-
tem takes the well-known “microkernel performance hit”
due to the additional decomposition and context switching
overhead: much more so, in fact, because our microker-
nel isnew and entirely unoptimized. We discuss bel ow that
thereis nothing about supporting RVM’sthat isincompati-
ble with a high-performance kernel. In addition, this paper
isprimarily concerned with showing that relative per-layer
cost of virtual machine monitorsis reasonable, rather than
base system performance.

The remainder of this section describes only the aspects
of the kernd that are specifically relevant to the RVM
model.

41 Key Properties

The Fluke kernel does not actually enforce a recursive
virtual machine moddl: its APl contains no explicit notion
of a process hierarchy. However, our kernel APl enables
RVMs by providing a number of vital properties. These
abstract properties are described briefly below, and in later
sections explored as they are manifest in the Fluke API.

Relativity of kernel abstractions: All kernel objects
and abstractions are completely relative: no absolute,
global resources or namespaces are made visible through
thekernel API. Similarly, there are no specia global privi-
leges given to some processes but not others (e.g., no con-
cept of “root™), only privilegesof processesrelativeto each
other. Absolute resources cannot easily be virtualized re-
cursively, and therefore would tend to cripple the RVM
model. For example, if globally unique identifiers were
used to designate kernel objects or communication end-



points, then migrating or restarting checkpointed environ-
ments would be difficult because the “unique’ identifiers
used by the migrated environment on the old system might
conflict with identifiers already used in the new system.

Exportability of kernel object state: All kernel objects
(e.g., threads, regions) exported through the APl are de-
signed sothat al of their vital state can beextracted by user-
level code and later used to rebuild equivalent objects. For
example, this property is obvioudy crucia for checkpoint-
ing to work: otherwise, it would be impossibleto save and
restore kernel objects used by checkpointed applications,
such as threads. However, this property is aso required
in other cases as well: for example, it enables our out-of-
kernel virtual memory manager (MM) and, soon, our dis-
tributed memory manager, to demand-page kernel objects
aswell as ordinary application data.

Object ownership: Findly, our kerndl’s APl is de-
signed so that al kernel objects associated with a particu-
lar process can be located and conclusively determined to
be “owned by” that process. This property of “ownership”
or “process association” isvital to providing control over
nested subprocessestotheir parents. Injust one example of
this requirement, without it a process manager has no way
to ensure reclamation of all resources consumed by a child
process. When its child dies, it needs to be able to track
downall thekernel objectsused by that process and any de-
scendants it may have spawned. In Mach 3.0, for example,
achild task may create new tasks. When the child dies the
parent can find a capability to the grandchild, but hasno re-
liableway to determinethat the capability actualy refersto
atask, and assuming it does, whether that task islogicaly
part of the child’sstate, or was created by some other unre-
lated task. Also, the child could have simply destroyed its
capability to the grandchild, leaving no trace.

Thefollowing sections describe in more detail the Fluke
kernel primitives and how they provide the fundamental
propertieslisted above.

4.2 Kerne Objects

The Fluke kernel provides only afew types of primitive
kernel objects, upon which al other functionality is built.
Threads represent independent flows of control and con-
tain CPU register state, among other things. Spaces, re-
gions, and mappings define the address spaces in which
threads execute. Ports, port sets, and port references define
communication endpoints. References to non-ports pro-
vide handlesto most other kindsof kernel objects. Mutexes
and condition variables provide synchronization between
threads sharing memory (either withinaprocess or between
processes).

All active kernel objectsarelogically associated with, or
“attached to,” asmall chunk of physical memory. Any pro-
cess into which agiven page of physical memory ismapped
can invoke kernel operations on any kerndl object in that

page, by specifying the virtual address of the object within
that address space. A thread can create new kernel objects
in any memory mapped into its address space that has suf-
ficient permissions; besides the normal r w protections, an
“object_create” permission must be set. The small user-
visible chunk of memory associated with an active kernel
object is reserved for the kernel’s use. Since this memory
can be read and written by untrusted user-level code (even
though doing so is aviolation of the API), no kernel object
stateisitself storethere; instead, itisused to store hintsthat
speed up the kernel’s abject lookup upon a system call.

This association of kernel objects with user-level
memory provides the notion of object ownership that is
needed to support recursive virtual machines. We have
reasons unrelated to RVMs—future base performance
optimizations—for choosing this design for achieving
the ownership property. More traditional descriptor- or
handle-based approaches to representing and addressing
kernel objects should work as well, as long as the design
providesthe key propertiesoutlinedin Section 4.1.

4.3 Memory Management

Foaces are kernel objects representing address spacesin
which threads can execute. Any number of threads can ex-
ecute in a particular space. One space object is used for
each application process, and by higher-level convention,
one for each memory segment provided to that process, as
explained in Section 6.2.

The actual address space of aFlukespaceisdefined rela
tiveto those of other spaces: itiscomposed of “views’ into
other spaces. To manage memory within spaces, Fluke de-
fines two object types: the region object which “exports’
memory from a space and the mapping object which “im-
ports’ memory into a space.

A mapping object effects “remapping” between spaces,
mapping some or all of the address space defined by are-
gion object into another, destination space. New regions
covering this area in the destination space can be created,
allowing the export of that portion of its address spaceto a
third space, and so on. In this way, mappings and regions
formahierarchy of memory sharing rel ationships. Theker-
nel acts as the root space, into which all physical memory
isimplicitly mapped,; it acts as the “ultimate source’ of all
physical memory.

In order to execute user-level code, the kernel internally
“composes’ these space-relative mapping and region ob-
jectsinto actual hardware pagetablesthat trand ate directly
from the virtual address space of a particular process into
physical memory addresses. This composition mechanism
is similar to the f-maps described in the recursive virtual
machine literature[16].

The kernel’s memory remapping mechanism provides
the basic “relative memory” support needed to implement
nested processes. For example, to create a nested subpro-



Cess, a process can simply create a new space object, one
or more regions associ ated with its own space object defin-
ing areas of itsown virtual address space it is setting aside
for the use of the child, and corresponding mapping objects
to map these regions into the child space at the appropri-
atelocations.? Any threads created inthechild processwill
then execute in that address space, and will only be ableto
access memory to which it was given access by the parent.
The parent can revoke or modify the child's permissionsto
this memory at any time, allowing the parent to “virtua-
ize" the child’sview of memory as desired. Page faultsin
the child caused by missing permissions are delivered by
the kernel to the appropriate parent process.

Note that the kerndl provides no primitivesfor “alocat-
ing” memory: storage allocation and management are done
purely using high-level protocols. For example, in the sit-
uation described above, if the running child process needs
more memory (e.g., needs to grow its heap), it must com-
municate with an ancestor process; the ancestor can then
reserve more memory for the child and set up appropri-
ate regions and mappings or grow existing ones as neces-
sary. The high-level protocol for finding and bindingto the
appropriate memory-serving ancestor process is described
later, in Section 5.

Other Hierarchical Memory Management Models:
We considered using a design similar to that in L4, which
has no explicit abstraction of memory mapping at al; i.e,
no “mapping” object. In that moddl, (physical) memory
pages are passed around via | PC messages or by a specia
kernel operation. Hence, there was no kernd-visible
virtual memory hierarchy, just aphysical page hierarchy.

Although this model may have worked for those man-
agersthat did not want complete control over memory they
handed out, it made it extremely hard for those that did.
Specifically, thiswould not allow DSM to be implemented
transparently over multiple processes by a user-mode pro-
cess. A process severd levels removed from a DSM man-
ager might flush page mappings from its children, and the
manager would never know. If thereis an explicit object
representing an area of memory, it providesa handlefor de-
tecting such cases.

4.4 Interprocess Communication

IPCinFlukeisbased onacapability model similar tothat
of Mach 3.0. A port providesthe server endpoint of acom-
munication channel, while a port reference provides the
client-sideendpoint. A Fluke message consists of astream
of raw, uninterpreted bytes, plus an optiona sequence of
port references (capabilities).

2The actual method of creating nested child processesin our system,
describedlater, isalittle morecomplicatedin order to providegreater flex-
ibility; however, the simple method described here works fine and illus-
trates the basic concept.

The capability model used in Fluke supports recursive
virtual machinesinanumber of ways. First, it providesthe
notion of relativity in the communication mechanism es-
sential to the nested process model: given a capability to a
fileservice, for example, the client need not know where or
how thefile server isimplemented, or what intermediaries,
if any, may be interposed on the communication channel.
Sinceaparent process that creates a nested subprocess con-
trolswhat capabilitiesit initially givesto the subprocess, it
ultimately controls all communication across the “bound-
ary” containing thenested subprocess. If thenested subpro-
cess creates further subprocesses, resulting in afull nested
environment, then the processes in this environment can
freely communicate among themselves with no interfer-
ence from or knowledge by the parent; however, commu-
nication with entities outside of the environment can still
be controlled by the parent as desired.

Since these are microkernel-mediated capabilities and
therefore not directly accessible to any user process, they
can be passed fredly between RVM layers, without com-
promising anyone's security. This contrasts with the Cam-
bridge CAP computer[45], for example, in which capabil -
ities could not be passed between process hierarchy layers
because the bitsrepresenting a capability in one processare
directly accessibleto the coderunninginitsparent process.
The ability of capabilitiesto be passed arbitrarily between
our RVM layers alows communication to short-circuit the
layers in many cases, as described later; this property is
very important for maintai ning good performance, because
it allows parent processes to interpose selectively on IPC
channel sentering or leaving the subprocess, rather than be-
ing forced to interpose on all IPC, which would result in a
much larger performance penalty.

Even though a parent process does not have direct ac-
cessto theraw bitsdescribing capabilitiesinitsnested child
processes, The Fluke API alowsa parent to determineif a
given capability refersto an object under itsdomain of con-
trol, and if so, which one. For example, our checkpointer
usesthisfunctionality to detect and “passivate’ capabilities
in one part of the checkpointed environment that refer to
other objects elsewhere in the checkpointed environment,
so that these objects and capabilities can be transparently
restored on restart. Capabilitiesreferring to objectsoutside
of the checkpointed environment will not be “recognized”
thisway and must be handled separately; these issues are
discussed later in Section 6.3.

In providingthe*exportability property,” thedeterminis-
tic and synchronous Fluke | PC semantics are al so relevant.
Fluke 1 PC has no message queues, avoiding the problem or
impossibility of retrieving messages in such an intermedi-
ate state. If Fluke IPC blocks, e.g., due to a page fault, the
thread state, buffer offset, and residual length are rolled-
back to a point at the kerndl entry boundary. Thisaidsin
the provision of simple exportable semantics.



45 Scheduling

Thefinal type of resource the Flukekernel directly deals
with is CPU time. As with memory and communica-
tion, the kernel provides only minimal, completely rela
tive scheduling facilities. Threads can act as schedulersfor
other threads, donating their CPU time to those threads ac-
cordingto somehigh-level scheduling policy; thosethreads
can then further subdivide CPU time among still other
threads, etc., forming ascheduling hierarchy. The schedul-
ing hierarchy normally “follows” thevirtual machine hier-
archy, in aloose sense, but is not required to. The higher-
level “common protocols’ determine the actual scheduling
hierarchy.

The details of scheduling under Fluke [15] are beyond
the scope of this paper; only its relative, hierarchical na-
ture is important to the RVM model. Other hierarchical
schedulers, such as the meter system in KeyKog20], and
lottery/stridescheduling[44], should alsowork in our RVM
mode!.

46 Security

The Fluke kernel currently contains no specia security
mechanisms; all low-level support for security isintegrated
into the other primitives exported by the kernel. Memory
access security is provided by the memory mapping and
protectionmechanism, communication security isprovided
by the capability model, and CPU usage security is pro-
vided by the hierarchical scheduling mechanism.

This suffices for many environments. However, to sat-
isfy the most demanding security-assurance needs such as
themost stringent of the TCSEC[39] classes, it appearsim-
portant to provide explicit support for traditional subject-
based security. We are working with otherswho are adding
such support to Fluke. Our intent is to provide a means
to virtuaizethe ensuing security identifiers, preserving the
“relativistic property” of the interface. We are evauating
whether this" security enforcement” can and should beim-
plemented by an ordinary process or at the kernel level, as
istraditionally done.

It is worth noting that some other kernel-level security
models are likely aso to be compatible with the RVM
model, such as the Clan/Chief model used in L3 [32],
or the hierarchica subject-based security model used in
VST 42].

5 High-leve Protocols

In order to demonstrate how our model can be appliedto
“real” systems, we have implemented a partial POSIX en-
vironment on top of the Fluke kernel, using VMMsto pro-
videtraditional Unix kernel features, such as process man-
agement and demand-paged memory, athough in a more
flexible way.

5.1 Common Protocols

A crucial component of our virtualizable machine archi-
tectureisthe common protocols: aset of standardized inter-
faces used to communicate between VM layers. Whereas
the underlying Fluke IPC mechanism provides primitive
I/O channels, comparable to I/O ports in hardware-based
virtual machinearchitectures, the common protocol sdefine
the communication protocols used on those ports, anao-
gousto the register programming conventions used to pro-
gram hardware devices.

There could be more than one set of common protocols
which define distinct virtualized architectures; in this sec-
tion we consider the common protocol suite used to imple-
ment a partial POSIX environment on top of the Fluke ker-
nel. While many of the protocols are designed specifically
for POSIX (e.g., the process management interface) some
are more generd (e.g., the memory management and file
I/O interfaces) and could be applicable to other environ-
ments. The POSIX common protocols, hereafter referred to
as “the Common Protocols’” or CP, are a set of hierarchi-
caly structured interfaces defined in CORBA IDL.

Parent interface. Thisis the top level interface used
for parent/child communication, which effectively actsasa
“name service” interface through which the child requests
access to other services. This is the only interface that
all VMMs interpose on; a VMM sdlectively interposes on
other interfaces only as necessary to perform its function.
The overhead of thisinterpositionis minimal because typ-
ically only afew requests are made on thisinterface, dur-
ing the child'sinitialization phase, to find other interfaces
of interest. The parent interface currently provides meth-
odsto obtaininitia filedescriptors(eg., st di n, st dout ,
st der r); find afilesystem manager, find a memory man-
ager, find a process manager, and exit.

Filesystem interface. The file system interface in our
system is similar to those of other microkernel-based op-
erating systems that support independent file servers, such
as Spring[27] and the GNU Hurd[5]. It provides meth-
ods closely corresponding to Posix file I/O calls, such as
open, | i nk,unlink,rename, nkdi r, etc.

Memory Management interface. The Common Proto-
cols memory interface exports memory segment and pool
abstractions. A memory segment represents an arbitrary-
size chunk of alocated memory which can be mapped into
a process's address space. The segment interface includes
methods allowing clientsto map segments, changethesize
of variable length segments, destroy segments, etc. When
a segment is destroyed, al Fluke objects in its memory
are destroyed and the segment’s memory pages freed. A
memory pool is a collection of segments and other (sub)
pools used to account for and reclaim “anonymous’ mem-
ory. Memory pools provide methods to create and destroy
sub-pools, and to allocate segments from the pool. De-
stroying a pool destroysall segments allocated fromit and,



recursively, all sub-pools derived from it. In short, seg-
ments represent actual memory while poolsprovide a con-
venient mechanism for resource control and accounting.

Process Management interface. The process manage-
ment interface supports POSIX process-related functional -
ity, suchasf or k,exec, get pi d, etc. It dsoprovidesthe
means for processes to send POSIX signalsto each other.

5.2 Libraries

In our system, most of the POsIX functionsthat are tra-
ditionally implemented as system calls are actually imple-
mented by the C library residing in the same address space
as the application using it. These C library functions then
communicate with parent VMMSs and externa servers as
necessary to provide the required functionality. For exam-
ple, each process sfiledescriptor tableanditscurrent direc-
tory aretracked intheprocess itself, as Fluke | PC capabili-
tiesreferringtofileservers. Thefiledescriptortableitselfis
managed purely by theloca Clibrary.? Our C library sup-
ports multithreaded applications and servers by providing
a subset of the PosIXx.1b threads interface (“pthreads’).

Whereas the common protocols can be considered part
of the machine architecturein that they must be supported
at each virtual machine interface in order to provide stack-
ability, the Clibrary ispurely interna to VMMs and appli-
cation processes, VMMs and applications could be written
using completely different libraries without affecting com-
patibility or VMM stackability. TheClibrary in our system
is somewhat comparable to IBM’s Conversational Moni-
tor System (CMS), aminimal single-application” operating
system” designed onlyto run under virtual machines, which
provides high-level services as a convenience to applica
tions without actually implementing significant OS func-
tionality itself.

The Nesting Library. The nesting library, generally
linked only into virtual machine monitorsand not ordinary
servers or applications, providesthe “parent-side” comple-
ment to the C library: it provides basic facilitiesto support
applicationsthat create nested subprocesses. For example,
it contains standard functionsto spawn anested subprocess
given an arbitrary executable fileimage. Use of thislibrary
isagain completely optional: applications can always cre-
ate nested virtual machines manually in whatever way they
desire; thislibrary only provides a“standard” mechanism
for creating child virtual machines and providing Common
Protocol s-compatibleinterfaces to them.

Although these libraries are currently statically linked,
onceweimplement shared librariesin our system, it will be
possible to share this library code even across VM layers.
Thisisbecause the Fluke rel ative memory mapping mech-

3 However, theactual filesand “ openfile descriptions”, containing seek
pointers and most other per-open state, are maintained by separate file
server processes, this greatly simplifies some of the traditionally hairy
“multiserver issues.”

anism is not constrained to follow the virtual machine hi-
erarchy strictly: mapped file images can be exported from
an arbitrary file system server directly into any task that
can access the server (i.e., has a capability referencing the
server with sufficient permissions).

5.3 Bootstrapping: the Kernel Server

Besides implementing the basic microkernel APl used
by al virtual machine layers, the Fluke kernel also im-
plements a minimal Common Protocols interface defining
the environment presented to thefirst user-level application
loaded directly on top of the kerndl (the “root” virtual ma-
chine). Thisinitia CPinterface consistsof aphysical mem-
ory interface and aminimal root file system interface.

The memory pools exported by the kernel provide the
full memory pool interface defined by the Common Proto-
cols; however, memory segments allocated from the ker-
nel’spoolsalwaysrefer to unpageable physical memory. If
demand paging is desired, an appropriate virtual machine
monitor must be loaded on top of the kerndl.

The kernel’s root file system interface exports a simple
memory-based file system whose initia contents are a set
of boot modules loaded into physical memory by the boot
loader along with the kernel. These files typically contain
executable images for VMMs and other components that
must be loaded before a “red” file system. The minimal
root file system supportsfile creation, reading, writing, etc.;
however, as with the root memory pools, all files on this
root file systems are stored in unpageabl e physical memory.
If persistent, disk-based files are needed, then an external
file system must be run on top of the kernel; the kernel’s
root file system can then be destroyed in order to free up
physical memory occupied by theinitial files.

Thekernel doesnot provideany process management in-
terface at al; therefore, in order to run applicationssuch as
shellswhich create and manipul ate POSIX processes, apro-
cess manager must be run on top of the kernel.

6 Example Virtual Machine Monitors

We now detail the user-level applications that take ad-
vantage of themodel to provide OSfeaturesin amore flex-
ibleway.

In the following sections we describe these examples
which we have implemented: POSIX process management,
demand paging, checkpointing, debugging, and tracing.
We also outline an unimplemented example: a distributed
memory manager (DMM) cooperating with other DMMs
through IPC to create one large transparently distributed
environment out of severa independent environments.

6.1 The Process Manager

Weimplemented avirtual machine monitor that creates a
POSI X -like multiple-process environment, with each “pro-



cess’ being a separate virtual machine implemented by
the process manager. The process manager keeps track
of process IDs, handlesinterprocess signas, f or k() and
exec(), and implements other high-level mechanisms
expected in a Unix-like environment, as defined in the
Process: : Common Protocol. The process manager is
a completely optional component: applications that don’t
fork(), send signds, etc., can be run without one. Fur-
thermore, unlike even in most microkernel-based systems,
multiple process managers can be run side-by-sideor even
arbitrarily “stacked” on top of each other to provide multi-
pleindependent POSIX environments on a single machine.

The process manager’s basic functionisto allow multi-
ple peer processes to coexist at the same nesting level and
interact with each other as processes do in traditional sys-
tems. The other nesting modul eswe implemented can only
run asinglenested subprocess at once; “spreading” thetree
isleft to the process manager (PM).

The PM communicates with its child processes by in-
tercepting messages on their process port. It should be
pointed out, however, that the processes can and do directly
use the facilities provided by the Fluke kernel API. For in-
stance, thef or k() operation only registersanew process
with the PM. Creating new memory segments, copying the
memory segments, copying the kernel objects, and starting
the necessary threads in the child process are al done di-
rectly by the parent task.

The PM does not maintain memory. Instead, when
gueried for its MenPool interface it passes on the
MenPool port reference obtained from its parent, refer-
ring the tasks it manages to whatever memory manager
it happens to run under. This can be the kernd server
in a redtime system which uses physica memory only,
or a virtua memory manager at any point in the nesting
hierarchy. Futurerequests are sent directly to that memory
manager.

Multiple Process Managers
Some microkernel-based OSs, such as Mach, have been
able to run multiple independent high-level operating en-
vironments simultaneoudly by running multiple instances
of the necessary servers. However, doing so generadly
required that the “nested” servers be somewhat modified
(eg., #i fdef’d) in order to conform to the interfaces
exported by the previously loaded operating environment
rather than those exported by the “raw” microkernd. Also,
once launched, it was often difficult for the parent environ-
ment to control the child environment: for example, to con-
trol the amount of memory it uses, or to find and kill all the
processes it may have created if the sub-environment isto
be terminated. These were problemsin al of the existing
Mach-based servers, for example, such as UX, Lites, and
the Hurd. Under the nested process model, these problems
do not arise.

6.2 TheVirtual Memory M anager

We implemented a user-level demand paged virtual
memory manager that creates a virtua machine whose
anonymous memory is paged to aswap file. Arbitrary pro-
grams can be run in this paged virtua machine, such as a
single application, or a process manager supporting an en-
tire paged POSIX environment similar to atraditional Unix
system. Since demand paging is implemented as a sepa-
rate component instead of being lumped with other features
such as multiuser security, it is much easier to avoid prob-
lems with traditional virtual machine monitors related to
duplication of effort, such as double paging[17, 37].

Our prototype memory manager (MM) is implemented
asan ordinary user-space application program, which loads
and runs another application program (specified on the
MM’s command line) in a virtua memory environment.
The memory manager implements the complete Common
Protocols memory interface, while “passing through” the
interfaces such as file systems and process management,
with no interposition. The MM providesanonymous mem-
ory segments backed by a swap file and cached in its own
address space.

On startup the MM obtainsamemory segment of aspec-
ified size from its own memory manager. This segment is
the physical memory that the MM virtualizes.* The MM
then spawns the application to be run, interposing on its
Common Protocols parent interface.  The manager passes
on (viaits parent port) al requests on that port except for
the request for amemory pool, which it provides.

Creation of poolsand sub-poolsinvolvesallocation of a
new object and port reference to return to the caller. When
amemory pool segment creation request is made, the MM
allocates the necessary address space resources. In addi-
tion to providing memory pages, the MM must be able to
return a reference with which a client can map the seg-
ment with a given protection and it must be able to handle
page faults that occur within the segment. The Fluke re-
gion object providesthese capabilities. Use of aregionre-
quires that a segment occupy a contiguous range of mem-
ory. The memory manager accomplishes this by creat-
ing a separate Fluke space object whose only functionisto
provide address space for the segment’s region and mem-
ory. The manager maps ranges of physica memory into
this space as required.

When physical memory is freed, either because of ex-
plicit segment destruction or because of page replacement,
the MM must deal with any Fluke kernel objects that were
present inthe memory. Using aFluke microkerne call, the
manager locates all objects in the affected range of mem-
ory. Inthe case of segment destruction, it can then just de-
stroy the objects. However, for page replacement the ob-

4Though this segment may in fact be virtualized by a previously-
loaded memory manager, we refer to it throughout this section as the
“physical” memory that the memory manager provides.
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jectsneed to be preserved and | ater restored when the mem-
ory is paged in. The simplest approach for doing this is
to move abjects (using a Fluke kernel call) into MM pri-
vate memory at pageout time and to move them back at
pageintime. A more sophisticated method takes advantage
of themicrokernel’sability to completely export kernel ob-
ject state to page objects out along with “raw” memory just
as the checkpointer does.

We have deployed the MM in two configurations. In the
simplest configuration, the MM does no paging and is vir-
tualizing memory only in the sense of haming (i.e., remap-
ping virtual addresses). Here, requests for new memory
segments arefulfilled by all ocating the appropriate amount
of physica memory at segment creation time. Thus the
application environment can only alocate as much virtua
memory as the MM has physical memory. Also, since no
page replacement is performed, the MM only implements
destruction of Fluke objects.

In amore conventional configuration, the MM allocates
aFlukespace and region at segment creation timebut phys-
ical memory isallocated on demand. When a segment page
isfirst referenced, afault is generated which is directed to
the Fluke region’s“keeper” port whichisheld by the MM.
The MM can then alocate physical memory, map itintothe
host space at the appropriate location, and return to the ap-
plication to retry. During page replacement, the MM cur-
rently just moves objectsinto its memory.

The MM is free to implement whatever page replace-
ment policy it chooses. This could be an interna global
policy for its physical memory pool, or segment-specific
policiesnegotiated with applicationsthrough ahigher-level
protocol.

6.3 The Checkpointer

We implemented a user-level checkpointer that, like the
demand pager, can operate over a single application or an
arbitrary environment, transparently to thetarget. By load-
ing a checkpointer in the “root” virtua machine immedi-
ately on top of the microkernel, a whole-machine check-
pointed system can be created similar to that provided in
the kernel by KeyKOS[28] and L3[33]. To our knowledge
thisisthefirst checkpointer that can operate over arbitrary
domainsin thisway.

Checkpointing Algorithm
Our checkpointer currently uses a smplistic sequential
checkpointing algorithm: to take a checkpoint, it stops all
the threads in the child process, saves the contents of the
child’s memory (including the state of any kernel objects
the child process has created in its memory), and then re-
enables the threads to allow the child process(es) to con-
tinue execution.

This algorithm, of course, will not scale well to large
checkpointed applications or environments, or to dis-
tributed environments. However, more efficient single-

process checkpointers based on well-known agorithms
[12, 10] could aso be implemented in our environment, in
the same way.
Checkpointing memory

Because the checkpointer interposes on the memory alo-
cation interface, it has specific knowledge of what memory
the application has asked for and what memory it isusing.
Thisdirect accessisa so used to find kernel objects: usinga
Flukemicrokernel call, the checkpointer locates all objects
inthe relevant regions.

Checkpointing kernel objects
There are two classes of kernel objectsthat a Fluke check-
pointer must deal with. First are those objects created
within the child environment which only reference kernel
objectsinternal to that environment. To preserve the state
of these objects we create unique id’s for each object and
represent inter-object references with these id's.

The second class of objects are those with references to
kernel abjects outside of the scope of the checkpointer, for
example a reference to the memory server, or open files.
Any externa reference owned by the child environment
must have been granted to it by its parent. For exam-
ple, memory mappings in the child environment will con-
tain references to the exported regionsin the checkpointer.
These references will be flagged as exported region refer-
ences, and replaced with equivalents at restart.

A checkpointer can choose to interpose on as many po-
tential external references as it likes. Our implementation
chooses to interpose on those things necessary for a mini-
mal complete checkpoint, comparable to the functionality
offered by other user-level checkpointerg[36, 40]. These
are library-based checkpointers, which require re-linking
of the application in order to interpose on its system calls.

Standard 1/0O. The port references representing the
st di n,st dout ,andst der r filehandlesarerecognized
by the checkpointer during checkpointing and, on restart,
are reinitialized with the corresponding file handles in the
new environment. Thus, al standard 1/O file descriptors
(including descriptorsin nested subprocesses of the appli-
cation) are transparently rerouted to the new environment.

Service Ports. When the sub-environment asks for any
of the generic service ports—memory allocator, file sys-
tem, or schedule—the checkpointer hands back a refer-
ence and tracksthat reference in an internal catalog. These
service ports are handled exactly as the Open Files above.

Special Files. Our current checkpointer doesn't inter-
pose on any file system accesses, but could recognize file
open calsand checkpoint file state (or whol efiles) withthe
process, in order to provide amore consistent restart.

Unknown References. References to thingsthe check-
pointer chose not to intercept, for example arbitrary files,
will be replaced with null references. Thishas similar con-
sequences to an NFS server going down and leaving stale
file handles behind.
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Process I Ds. Sincethereare no explicit IDsinthe RVM
model, when restoring a complete environment conflicts
cannot occur. Process ID troubles can occur when check-
point/restoring only part of an environment. In particular,
since the checkpointer is not currently process-manager-
aware, a single process restored under the PM is not as-
signed a process ID. The process interface and the check-
pointer can be easily extended to fix this. Another response
to thiskind of issue, enabled by the RVM flexihility, isthat
the user can simply run another copy of the PM under the
checkpointer, which then runs the target application.

IPC state. Processes involved in IPC at the time of a
checkpoint will restart the | PC when the checkpoint iscom-
pleted or restored. Theact of “ stopping” athread causesthe
kernel to back the thread’s actions out to are-entry point.

Checkpointer Summary

Two key features of our RvM model facilitate checkpoint-
ing. First, the exportable state of kernel objectsalowsany
application to extract and store the state of kernel objects.
Second, the consistent interface provided by the model en-
capsul ates the checkpointer’s target to the extent that fea
tures previoudy available only in kernel implementations
are feasible outside of the kernd.

6.4 The Debugger and Tracer

We implemented a debugger that can be used to debug
either ordinary applicationsor other virtual machine moni-
tors. Thedebugger creates avirtual machine containing the
process or environment being debugged, and its presence
iscompl etely transparent to the code runningin that virtual
machine.

Thedebugger works by initializingthe keeper port refer-
ence of the processto be debugged to aport it creates when
the child process is spawned. When a thread in the child
faults, the kernel sends an exception RPC along with the
thread’ sregister stateto itskeeper port. The debugger han-
dlesthismessage and viaread/writecallsonitsstdin/stderr,
communicating viaaseria linewith aremote host running
GDB. Thedebugger restartsthethread by sending areply to
the kernel that includesthe thread’ smodified register state.

Note that although Mach 3.0 provides a similar abil-
ity to interpose on an exception port, Mach alows a task
to change its own exception port reference, unlike Fluke.
Thusabuggy or uncooperative Mach task could escape the
debugger’s control. Thisisa simple example of the inad-
equacy of existing kernels for implementing recursive vir-
tual machines.

The Tracer

Finally, we implemented a tracer that can be used to
trace the message activity of an arbitrary application nested
withinthetracer. The tracer interposeson the application’s
parent port and on any port references the child task re-
ceives through the parent port. It does this by creating a
new port reference and passing that to the child task instead

of theoriginal. Thetracer transparently forwards messages
received from the child to the original port and vice versa

Besides monitoring RPC activity to aid in debugging, the
tracer can also functionasacompletebut “null” virtual ma-
chine monitor, in that it interposes on every interface, but
does nothing except passdataon. Thiscan be used to quan-
tify the worse-case communication overhead.

6.5 Distributed Memory M anager

A distributed memory manager cooperates with other
DMMs through IPC to create one large transparently dis-
tributed environment out of several independent environ-
ments. A DMM isvery similar to a virtua memory man-
ager (MM), inthat it providesavirtual address space paged
to some externa storage location. However, whereas a
VMM pagesthingsprimarily todisk or other stablestorage,
a DMM pages things primarily to other nodes. Note that
theexportability of kernel object stateshouldalow aDMM
to distribute entire POSI X -like operating environments, not
simply memory.

The DMM and MM functions could be combined into
one program or could remain separate. If they are sepa
rated, then aDMM could be run either on top of aMM, to
provide adistributed memory with each node having sepa-
rate page-out space, or below aMM, with the MM provid-
ing asingle common paging space for the entire distributed
subsystem.

DMMs could be implemented to support different co-
herency models; however, the kernel architecture is de-
signed to be ableto support rel ease-consi stent DSM|[ 7] par-
ticularly well. Since all of the kernel objectsin use by its
subtasks, such asmutexes and conditionvariables, arefully
visibleto it, the DMM should have the perfect tools.

In addition, the “segment” abstraction of the Common
Protocol s providesa handle to determine the granul arity of
synchronization events. In other words, the CP conven-
tionsprovideinformation as to how much memory must be
synchronized when a given mutex or condition variable is
used.

7 Experimental Results

In order to eva uate the performance effects of recursive
virtual machinesin our system, we used micro benchmarks,
some drawn from the | nbench suite[38]. These bench-
marks are designed to reveal the performance properties of
operating systems that directly affect real-world applica
tions. Our primary interest inthesetestsistorevea theper-
formance effect of different VMMsin our system on var-
ious types of applications; thus, we are mostly concerned
withrel ative slowdown due to VMMsrather than the abso-
lute performance of the system. All tests were performed
on a 100MHz Pentium PC with 32MB of RAM.
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Time (us)
Null system call 20
Mutex lock 5.2
Mutex unlock 5.8
Context switch 14
Null cross-domain RPC 54.6

Table 1: Absolute performance of microkernel primitives

Test Description Fluke Linux
bw.memcp Memory bandwidth | 37 MB/s | 42 MB/s
bw.mrap_rd | File mrap read 47 MB/s | 74 MB/s
bw.file_rd | Cachedfilereads 24 MB/s | 23 MB/s
lat _sig Signal handling cost | 259 us 52 us

Table 2: Absolutel mbench resultsfor Fluke and Linux

Absoluteperformance:  Toprovideabaselinefor further
evaluation, present in Table 1 the absol utetimesfor various
primitive Fluke microkernel operations, and Table 2 shows
absolute times for thel mbench benchmark programs we
will usein later tests running directly on top of the micro-
kernel with no intervening VMMs. For reference, we aso
show | mbench performance resultsfor Linux, taken from
theorigina | mbench paper[38]. Notethat the Linux tests
were made on afaster machine (120MHz Pentium) than we
used in our tests (100MHz Pentium). Also, since Linux is
amature, well-optimized monolithic kernel while Fluke is
amostly unoptimized microkernel, the performance results
for OS-intensive tests are not very comparable. However,
sincetheperformance resultsof primary interest for thispa-
per are the relative numbers presented below, we felt that
these discrepancies are not a major issue.

Cost of IPC interposition To measure the worst-case
dowdown caused by IPC interposition, we measured the
effect on the execution times of various applicationscaused
by the complete | PC interposition done by the tracer; these
times are shown in Figure 3. This test aso reflects the
performance that might be expected from a security moni-
tor VMM that supervises an untrusted application environ-
ment. However, thistest reflects worst-case interposition
cost; other types of VMMSs such as process managers only
need to interpose on some | PC connections, not all. Asex-
pected, applications that make heavy use of IPC (eg., file
read) suffer most fromthistest, while other applicationsare
essentially unaffected.

Performance of Various VMM hierarchies We mea
sured, under a variety of VMM hierarchies, a program
which forked a chain of five processes. This utilizes both
the process manager and the memory manager ports. We

Performance effect of complete IPC interposition
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Figure 3: Worst-case slowdown due to IPC interposition

found s owdownto belinear withthenumber of layers. The
margina cost of the PM is about 24%. The dataare consis-
tent with a MM interposition costing a little bit more than
aPM interposition.

f w05 di ff-fwob Nest ers
25956940 PM
52486392 26529452 MM PM
65405272 12918880 MM PM PM
82247326 16842054 MM PM WM PM
97997148 15749822 MM PM WM PM PM
116497487 18500339 MM PM WM PM MM PM

8 Conclusion

We have presented anovel approach to providing modu-
lar and extensi bl e operating system functional ity based on a
synthesisof microkernel and virtual machine concepts. We
have demonstrated the design and implementation of ami-
crokernel architecture that efficiently supportsfine-grained
recursive virtual machines. Our prototypeimplementation
of thismodel indicatesthat it is practical to modularize op-
erating systems this way: some types of virtual machine
layers impose almost no overhead at all, while others im-
pose some overhead, but only on certain classes of appli-
cations.

However, it remains to be seen how the model will scale
to ared, fully functiona system. Although we addressed
some of theissues of implementing anested process model
in a Unix-likeenvironment, there are many others, such as
networking and security. In order to address these issues,
we are working with the Free Software Foundation to port
the GNU Hurd, afully functional Mach-based multiserver
OS, to our Fluke kernel, using our RVM model.
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